Какие свойства металлов относятся к механическим

Содержание

Механические свойства металлов

Какие свойства металлов относятся к механическим

К основным механическим свойствам относят прочность, пластичность, твердость, ударную вязкость и упругость. Большинство показателей механических свойств определяют экспериментально растяжением стандартных образцов на испытательных машинах.

Прочность — способность металла сопротивляться разрушению при действии на него внешних сил.

Пластичность — способность металла необратимо изменять свою форму и размеры под действием внешних и внутренних сил без разрушения.

Твердость — способность металла сопротивляться внедрению в него более твердого тела.

Твердость определяют с помощью твердомеров внедрением стального закаленного шарика в металл (на приборе Бринелля) или внедрением алмазной пирамиды в хорошо подготовленную поверхность образца (на приборе Роквелла).

Чем меньше размер отпечатка, тем больше твердость испытуемого металла. Например, углеродистая сталь до закалки имеет твердость 100 . . . 150 НВ (по Бринеллю) , а после закалки — 500 . . . 600 НВ.

Ударная вязкость — способность металла сопротивляться действию ударных нагрузок. Эта величина, обозначаемая КС (Дж/см2 или кгс • м/см ), определяется отношением механической работы А, затраченной на разрушение образца при ударном изгибе, к площади поперечного сечения образца.

Упругость — способность металла восстанавливать форму и объем после прекращения действий внешних сил. Эта величина характеризуется модулем упругости Е (МПа или кгс/мм2), который равен отношению напряжения а к вызванной им упругой деформации. Высокой упругостью должны обладать стали и сплавы для изготовления рессор и пружин.

Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление разрушению (пластичность, вязкость, а также способность металла не разрушаться при наличии трещин).

В результате механических испытаний получают числовые значения механических свойств, т. е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материала.

Оценка свойств

При оценке механических свойств металлических материалов различают несколько групп их критериев.

  1. Критерии, определяемые независимо от конструктивных особенностей и характера службы изделий. Эти критерии находятся путем стандартных испытаний гладких образцов на растяжение, сжатие, изгиб, твердость (статические испытания) или на ударный изгиб образцов с надрезом (динамические испытания).
  2. Прочностные и пластические свойства, определяемые при статических испытаниях на гладких образцах хотя и имеют важное значение (они входят в расчетные формулы) во многих случаях не характеризуют прочность этих материалов в реальных условиях эксплуатации деталей машин и сооружений. Они могут быть использованы только для ограниченного числа простых по форме изделий, работающих в условиях статической нагрузки при температурах, близких к нормальной.
  3. Критерии оценки конструктивной прочности материала, которые находятся в наибольшей корреляции со служебными свойствами данного изделия и характеризуют работоспособность материала в условиях эксплуатации.

Конструкторская прочность металлов

Критерии конструктивной прочности металлических материалов можно разделить на две группы:

  • критерии, определяющие надежность металлических материалов против внезапных разрушений (вязкость разрушения, работа, поглощаемая при распространении трещин, живучесть и др.). В основе этих методик, использующих основные положения механики разрушения, лежат статические или динамические испытания образцов с острыми трещинами, которые имеют место в реальных деталях машин и конструкциях в условиях эксплуатации (надрезы, сквозные отверстия, неметаллические включения, микропустоты и т. д.). Трещины и микронесплошности сильно меняют поведение металла под нагрузкой, так как являются концентраторами напряжений;
  • критерии, которые определяют долговечность изделий (сопротивление усталости, износостойкость, сопротивление коррозии и т. д.).

Критерии оценки

Критерии оценки прочности конструкции в целом (конструкционной прочности), определяемые при стендовых, натурных и эксплуатационных испытаниях. При этих испытаниях выявляется влияние на прочность и долговечность конструкции таких факторов, как распределение и величина остаточных напряжений, дефектов технологии изготовления и конструирования металлоизделий и т. д.

Для решения практических задач металловедения необходимо определять как стандартные механические свойства, так и критерии конструктивной прочности.

Источник: https://www.metalcutting.ru/content/mehanicheskie-svoystva-metallov

Основные механические свойства металлов

Металлы и их сплавы являются одним из самых распространенных материалов для изготовления изделий различных видов. Но так как каждый из типов имеет определенные свойства – перед применением их следует детально изучить.

Зачем нужно знать механические свойства металлов

Основные виды чистых металлов

Металлы относятся к химическим элементам и веществам, которые характеризуются высоким показателем теплопроводности, в большинстве своем имеют жесткость. Под воздействием высоких температур повышается пластичность, обладают ковкостью. Эти характеристики материалов позволяют осуществлять их обработку различными способами.

Металлические материалы и их сплавы характеризуются рядом показателей: химическими, механическими, физическими и эксплуатационными. В совокупности они дают возможность определить фактические характеристики в полном объеме. Выделить наиболее важные из них невозможно. Но для решения определенных задач большее внимание уделяется конкретной группе свойств.

Механические свойства металлов необходимо знать для решения следующих вопросов:

  • производство изделия с определенными качествами;
  • выбор оптимального процесса обработки заготовки;
  • влияние механических характеристик металлических материалов на эксплуатационные свойства продукта.

Для определения конкретных механических свойств применяются различные методы. Испытания металлов и сплавов проводятся с помощью специальных приборов. Это делается в лабораторных условиях. Для достижения точных результатов рекомендуется использовать результаты исследований государственных метрологических организаций.

Механические свойства определяют показатель сопротивляемости того или иного материала на внешние силовые воздействия. Для каждого параметра существует определенные числовые показатели.

Твердость

Методика проверки металлов на твердость

При воздействии внешних факторов на металлические изделия происходит их деформация – пластическая или упругая. Твердость описывает сопротивление этим факторам, характеризует степень сохранения изначальной формы и свойств материала, изделия.

В зависимости от желаемых результатов проверка материала на твердость осуществляется тремя методами:

  • статический. На специальный индикатор, расположенный на поверхности металла, прикладывают механическую силу. Это делается постепенно и одновременно с этим фиксируется степень деформации;
  • динамический. Воздействие происходит для фиксации упругой отдачи или формирования отпечатка с определенной конфигурацией;
  • кинетический. Схож со статическим. Разница заключается в непрерывном воздействии для построения диаграммы изменения характеристик образца.

Измерение твердости зависит от выбранного метода — Бринелля (НВ), Роквелла (шкалы А, В и С) или Виккерса (НV). Все зависит от степени воздействия на материал, с помощью которых можно определить поверхностную, проекционную или объемную твердость.

Шкала Мосса применяется для вычисления показателя твердости редко. Ее суть состоит в вычислении характеристиках объекта методом царапания его поверхности.

Вязкость и хрупкость

Описание показателя вязкости

Эти характеристики указывают на возможность металла оказывать сопротивление при воздействии ударных нагрузок. Показателем является скорость деформации, т.е. изменение изначальной конфигурации заготовки при внешнем воздействии.

Знание показателя вязкости и хрупкости необходимо для расчета поглощаемой энергии воздействия, которая приводит к деформации металлического образца. В зависимости от необходимых данных различают следующие методы измерения и виды вязкости металлов:

  • статическая. Происходит медленное воздействие на материал до момента его разрушения;
  • циклическая. Образец подвергают многократным нагрузкам с одинаковым или изменяющимся показателем силы. При этом основной величиной циклической вязкости является количество работы, необходимой для разрушения образца;
  • ударная. Для ее расчета применяют маятниковый копер. Заготовку крепят на нижнем основании, маятник с рубящим конусом находится в верхней точке. После его опускания происходит взаимодействие металла и рубящей части. Степень деформации характеризуется вязкостью образца.
Читайте также  Как выбрать ножницы по металлу ручные

В зависимости от системы измерения существуют различные показатели вязкости:

  • СИ — м²/с;
  • СГС – стокс (СТ) или сантистокс (сСт)

Помимо метода испытания необходимо учитывать другие механические свойства металлов – температура на его поверхности и в структуре, влажность в помещении и т.д.

Хрупкость является обратным показателем вязкости. Она определяет, насколько быстро металл или сплав будет разрушаться под воздействием внешней силы.

Напряжение

Напряжением называется возникновение внутренних сил с различными векторами направленности при внешнем воздействии. Эта величина может быть внутренняя или поверхностная. Является обязательным для расчета при изготовлении несущих стальных конструкций или элементов оборудования, подвергающихся постоянным нагрузкам.

Главным условием для измерения этого показателя является равномерная нагрузка, действующая в определенном направлении. При этом возникает напряженное состояние образца, который подвергается воздействию уравновешенных сил. Помимо этого, воздействие может быть односекторным или много векторным.

Существуют следующие виды напряжения материалов и их сплавов:

  • остаточное. Формируется уже после окончания воздействия внешних факторов. К ним относятся не только механические силы, но и быстрый нагрев или охлаждение образца;
  • временные. Возникают только при внешних нагрузках. После их прекращения изделие приобретает изначальные характеристики;
  • внутреннее. Чаще всего происходит в результате неравномерного нагрева заготовок.

Напряжение является отношением силы воздействия на площадь, на которую она прилагается.

Кроме прямого давления на поверхность может наблюдаться касательное. Расчет этого параметра требует более сложных методик.

Выносливость и усталость

Пример деформации из-за усталости металла

При длительном приложении внешних сил в структуре образца выявляются деформации и дефекты. Они приводят к потере прочности образца и как следствие – к его разрушению. Это называется усталостью металла. Выносливость является обратной характеристикой.

Такое явление наступает в результате появления последовательных напряжений (внутренних или поверхностных) за определенный промежуток времени. Если структура не подвергается изменению – говорят о хорошем показателе выносливости. В противном случае происходит деформация.

В зависимости от точности расчета выполняют следующие испытания образца на выносливость для того, чтобы узнать механические свойства металлов:

  • чистый изгиб. Деталь закрепляется на концах и происходит ее вращение, в результате чего она деформируется;
  • поперечный изгиб. Дополнительно выполняется вращение образца;
  • изгиб в одной плоскости;
  • поперечный и продольный изгиб в одной плоскости;
  • неравномерное кручение с повторением цикла.

Эти испытания позволяют определить показатель выносливости и рассчитать время наступления усталости детали.

Для проведения испытаний необходимо руководствоваться принятыми методиками, которые изложены в ГОСТ-1497-84. Особое внимание уделяется отклонению свойств металла от нормы.

Ползучесть

Пример дефекта, возникшего из-за ползучести

Этот показатель определяет степень непрерывной пластической деформации при постоянном воздействии внешних и внутренних факторов. Вычисление этого параметра необходимы для определения жаропрочности металлов и их сплавов.

Для определения ползучести образец нагревают до определенной температуры. После этого наблюдают степень изменения его конфигурации с учетом приложенного напряжения. В зависимости от термического воздействия различают два вида испытаний на ползучесть:

  • низкотемпературное. Степень нагрева образца не превышает 0,4 от температуры его плавления;
  • высокотемпературная. Коэффициент нагрева больше 0,4 температуры нагрева.

Для проведения испытаний используют стандартные образцы прямоугольной или цилиндрической формы. При этом степень погрешности измерения не должна превышать 0,002 мм. В результате испытаний формируется кривая, характеризующая процесс ползучести.

В видеоматериале показан пример работы маятникового копера:

Источник: http://StanokGid.ru/osnastka/mehanicheskie-svoystva-metallicheskih-materialov-i-metallov.html

Характеристики основных механических свойств металлов и сплавов и способы их определения

Любое вещество, будь то газ, жидкость или твердое тело, обладает рядом специфических, только ему присущих свойств. Однако эти свойства позволяют не только индивидуализировать элементы, но и объединять их в группы по принципу схожести.

Посмотрите на металлы: с обывательской точки зрения это блестящие элементы, с высокой электро- и теплопроводностью, не восприимчивые к внешним физическим воздействиям, ковкие и легко свариваемые при высоких температурах. Достаточен ли этот перечень.

чтобы объединить металлы в одну группу? Конечно же нет, металлы и их производные (сплавы) гораздо сложнее и обладают целым набором химических, физических, механических и технологических свойств.

Сегодня мы поговорим лишь об одной группе: механических свойствах металлов.

Основные механические свойства металлов

Что это за свойства? Под механическими понимают такие свойства субстанции, которые отражают ее умение противостоять действиям извне. Известно девять основных механических свойств металлов:

— Прочность — означает, что приложение статической, динамической или знакопеременной нагрузки не приводит к нарушению внешней и внутренней целостности материала, изменению его строения, формы и размеров.

— Твердость (часто путают с прочностью) — характеризует возможность одного материала противостоять прониканию другого, более твердого предмета.

— Упругость — означает способность к деформированию без нарушения целостности под действием определенных сил и возвращению первоначальной формы после освобождения от нагрузки.

— Пластичность (часто путают с упругостью и наоборот) — также способность к деформации без нарушения целостности, однако в отличие от упругости, пластичность означает, что объект способен сохранить полученную форму.

— Стойкость к трещинам — под воздействием внешних сил (ударов, натяжений и пр.) материал не образует трещин и сохраняет наружную целостность.

— Вязкость или ударная вязкость — антоним ломкости, то есть возможность сохранять целостность материала при возрастающих физических воздействиях.

— Износостойкость — способность к сохранению внутренней и внешней целостности при длительном трении.

— Жаростойкость — длительная возможность противостоять изменению формы, размера и разрушению при воздействии больших температур.

— Усталость — время и количество циклических воздействий, которые материал может выдержать без нарушения целостности.

Часто, говоряо тех или иных свойствах, мы путаем их названия: технологические свойства относим к физическим, физические к механическим и наоборот. И это неудивительно, ведь несмотря на глубинные отличия, лежащие в основе той или иной группы свойств, механические свойства не только крайне тесно связаны с другими характеристиками металлов, но и напрямую зависят от них.

Физические свойства металлов

Наиболее взаимозависимы между собой механические и химические свойства металлов, ведь именно химический состав металла или сплава, его внутреннее строение (особенности кристаллической решетки) диктуют все остальные его параметры. Если говорить о механических и физических свойствах металлов, то их чаще других путают между собой, что обусловлено близостью данных определений.

Физические свойства часто неотделимы от механических. К примеру, тугоплавкие металлы еще и самые прочные. Главное же отличие лежит в природе свойств. Физические свойства — те что проявляется в покое, механические — только под воздействием извне.

Не хуже других связаны механические и технологические свойства металлов. Например, механическое свойство металла «прочность» может быть результатом его грамотной технологической обработки (с этой целью нередко используют «закалку» и «старение»).

Обратная взаимосвязь не менее важна, к примеру, ковкость проявление хорошей ударной вязкости.

Делая вывод, можно сказать, что зная некоторые химические, физические или технологические свойства можно предугадать, как будет вести себя металл под воздействием нагрузки (т.е. механически), и наоборот.

В чем отличия механических свойств металлов и сплавов?

Различаются ли механические свойства металлов и сплавов? Безусловно. Ведь любой металлический сплав изначально создается с целью получения каких-либо конкретных свойств.

Некоторые сочетания легирующих элементов и основного металла в сплаве способны мгновенно преобразить легируемый элемент. Так алюминий ( не самый прочный и твердый металл в мире) в сочетании с цинком и магнием образует сплав по прочности сравнимый со сталью.

Все это дает практически неограниченные возможности в получении веществ наиболее близких к требуемым.

Отдельное внимание следует уделить механическим свойствам наплавленных металлов. Наплавленным считается металл, с помощью которого производилась сварка двух или более частей какого-то металлического элемента или конструкции.

Этот металл словно нитки соединяет разорванные части. От того, как будет вести себя «шов» под нагрузкой, будет зависеть безопасность и надежность всей конструкции.

Исходя из этого, крайне важно, чтобы свойства наплавленного металла были не хуже, чем у главного металла.

Как определить механические свойства?

Экспериментальным путем. Среди основных методов определения механических свойств металлов можно выделить:

Читайте также  Какие металлы входят в состав бронзы

— испытания на растяжение;

— метод вдавливания по Бринеллю;

— определение твердости металла по Роквеллу;

— оценка твердости по Виккерсу;

— определение вязкости с помощью маятникового копра;

Механические свойства имеют весьма серьезное значение. Их знание позволяет использовать металлы и их сплавы с наибольшей эффективностью и отдачей.

Не удивительно, что многие считают самым дорогим металлом в мире золото. Это драгоценный металл, знакомый каждому, имеет высокую рыночную стоимость, однако не входит даже в тройку самых дорогих металлов. Стоит отметить, что цены на природные драгоценные металлы и металлы, полученные в лабораториях…
Прочностные свойства металла во много раз увеличиваются, благодаря легирующим элементам стали. По сравнению с улеродистой сталью легированная сталь является более устойчивой к коррозии и менее хрупкой,что дает возможность использовать её для производства наружных…
Броневая сталь используется для обеспечения броневой защиты объектов военного назначения, а также в технических целях.Плиты из броневой стали подвергаются термическому или химико-термическому воздействию, что позволяет добиться повышения…
Изготавливают жаропрочные стали и сплавы на основе железа, добавляя и другие мтеаллы. К примеру, благодаря наличию в составе хрома и никеля материал способен противостоять воздействию высоких температур. Если рассматривать процентное соотношение…
Что касается обозначения нержавейки, то маркировка сталей такого типа выполянется в буквенно-цифровом варианте аналогично маркировке конструкционных легированных сталей. Нестандартные нержавеющие стали принято маркирвоать с использованием буквенных индексов заводов……

Источник: https://promplace.ru/vidy-metallov-i-klassifikaciya-staty/mehanicheskie-svoistva-metallov-1542.htm

Свойства металлов

Металлы, это группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск. В данной статье все свойства металлов будут представлены в виде отдельных таблиц.

Свойства металлов делятся на физические, химические, механические и технологические.

Физические свойства металлов

К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, теплоемкость, расширяемость при нагревании.

Удельный вес металла — это отношение веса однородного тела из металла к объему металла, т.е. это плотность в кг/м3 или г/см3.

Плавкость металла — это способность металла расплавляться при определенной температуре, называемой температурой плавления.

Электропроводность металлов — это способность металлов проводить электрический ток, это свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля.

 Под электропроводностью подразумевается способность проводить прежде всего постоянный ток (под воздействием постоянного поля), в отличие от способности диэлектриков откликаться на переменное электрическое поле колебаниями связанных зарядов (переменной поляризацией), создающими переменный ток.

Магнитные свойства металлов характеризуются: остаточной индукцией, коэрцетивной силой и магнитной проницаемостью.

Теплопроводность металлов — это их способность передавать тепло от более нагретых частиц к менее нагретым. Теплопроводность металла определяется количеством теплоты, которое проходит по металлическому стержню сечением в 1см2, длиной 1см в течение 1сек. при разности температур в 1°С.

Теплоемкость металлов — это количество теплоты, поглощаемой телом при нагревании на 1 градус. Отношение количества теплоты, поглощаемой телом при бесконечно малом изменении его температуры, к этому изменению единицы массы вещества (г, кг) называется удельной теплоёмкостью, 1 моля вещества — мольной (молярной).

Расширяемость металлов при нагревании.Все металлы при нагревании расширяются, а при охлаждении сжимаются. Степень увеличения или уменьшения первоначального размера металла при изменении температуры на один градус характеризуется коэффициентом линейного расширения.

Химические свойства металлов

К химическим — окисляемость, растворимость и коррозионная стойкость.

Окисление металлов — это реакция соединения металла с кислородом, сопровождающаяся образованием окислов (оксидов). Если рассмотреть окисляемость шире, то это реакции, в которых атомы теряют электроны и образуются различные соединения, например, хлориды, сульфиды. В природе металлы находятся в основном в окисленном состоянии, в виде руд, поэтому их производство основано на процессах восстановления различных соединений.Растворимость металлов — это их способность образовывать с другими веществами однородные системы — растворы, в которых металл находится в виде отдельных атомов, ионов, молекул или частиц. Металлы растворяются в растворителях, в качестве которых выступают сильные кислоты и едкие щелочи. В промышленности наиболее часто используются: серная, азотная и соляные кислоты, смесь азотной и соляной кислот (царская водка), а также щелочи — едкий натр и едкий калий.Коррозионная стойкость металлов — это их способность сопротивляться коррозии.

Механические свойства металлов

К механическим — прочность, твердость, упругость, вязкость, пластичность.

Прочностью металла называется его способность сопротивляться действию внешних сил, не разрушаясь.

Твердостью металлов называется способность тела противостоять проникновению в него другого, более твердого тела.

Упругость металлов — свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших изменение формы (деформацию).

Вязкость металлов — это способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам. Вязкость — свойство обратное хрупкости.

Пластичность металлов — это свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность—свойство обратное упругости.

Технологические свойства металлов

К технологическим — прокаливаемость, жидкотекучесть, ковкость, свариваемость, обрабатываемость резанием.

Прокаливаемость металлов – это их способность получать закаленный слой определенной глубины.

Жидкотекучесть металлов — это свойство металла в жидком состоянии заполнять литейную форму и воспроизводить ее очертания в отливке.

Ковкость металлов —это технологическое свойство, характеризующее их способность к обработке деформированием, например, ковкой, вальцеванием, штамповкой без разрушения.

Свариваемость металлов — это их свойство образовывать в процессе сварки неразъемное соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией производимого изделия.

Обрабатываемость металлов резанием — это их способность изменять геометрическую форму, размеры, качество поверхности за счет механического срезания материала заготовки режущим инструментом. Обрабатываемость металлов зависит от их механических свойств, в первую очередь прочности и твердости.

Современными методами испытания металлов являются механические испытания, химический анализ, спектральный анализ, металлографический и рентгенографический анализы, технологические пробы, дефектоскопия. Эти испытания дают возможность получить представление о природе металлов, их строении, составе и свойствах, а также определить качество готовых изделий.

Таблица «Свойства металлов: Чугун, Литая сталь, Сталь»

  1. Предел прочности на растяжение
  2. Предел текучести (или Rp 0,2);
  3. Относительное удлинение образца при разрыве;
  4. Предел прочности на изгиб;
  5. Предел прочности на изгиб приведен для образца из литой стали;
  6. Предел усталости всех типов чугуна, зависит массы и сечения образца;
  7. Модуль упругости;
  8. Для серого чугуна модуль упругости уменьшается с увеличением напряжения растяжения и остается практически постоянным с увеличением напряжения сжатия.

Таблица «Свойства пружинной стали»

  1. Предел прочности на растяжение,
  2. Относительное уменьшение поперечного сечения образца при разрыве,
  3. Предел прочности на изгиб;
  4. Предел прочности при знакопеременном циклическом нагружении при N ⩾ 107,
  5. Максимальное напряжение при температуре 30°С и относительном удлинении 1 2% в течение 10 ч; для более высоких температур см. раздел «Способы соединения деталей»,
  6. см. раздел «Способы соединения деталей»;
  7. 480 Н/мм2 для нагартованных пружин;
  8. Приблизительно на 40% больше для нагартованных пружин

Таблица «Свойства цветных металлов»

  1. Модуль упругости, справочные данные;
  2. Предел прочности на растяжение;
  3. Предел текучести, соответствующий пластической деформации 0,2%;
  4. Предел прочности на изгиб;
  5. Наибольшая величина;
  6. Для отдельных образцов

Таблица «Свойства легких сплавов»

  1. Предел прочности на растяжение;
  2. Предел текучести, соответствующий пластической деформации 0,2%;
  3. Предел прочности на изгиб;
  4. Наибольшая величина;
  5. Показатели прочности приведены для образцов и для отливок;
  6. Показатели предела прочности на изгиб приведены для случая плоского нагружения

Таблица «Металлокерамические материалы (PM)1) для подшипников скольжения»

  1. В соответствии со стандартом DIN 30 910,1990 г. издания;
  2. Применительно к подшипнику 10/16 г 10;
  3. Углерод содержится, главным образом, в виде свободного графита;
  4. Углерод содержится только в виде свободного графита

Таблица «Свойства металлокерамических материалов (РМ)1 для конструкционных деталей»

  1. В соответствии со стандартом DIN 30 910,1990 г. издания;

Таблица «Свойства магнитомягких материалов»

  1. Данные относятся только к магнитным кольцам.

Таблица «Свойства магнитомягких ферритов»

  1. Нормируемые величины;
  2. Потеря материалом магнитных свойств в зависимости от частоты при низкой плотности магнитного потока (В < 0,1 мТл);
  3. Потери магнитных свойств при высокой плотности магнитного потока; замеряются предпочтительно при f = 25 кГц, В = 200 мТл, Θ = 100°С;
  4. Магнитная проницаемость при строго синусоидальном магнитном поле; замеряется при f
Читайте также  Как приварить оцинковку к металлу

Источник: http://press.ocenin.ru/svojstva-metallov/

Pereosnastka.ru

Основные свойства металлов

Категория:

Металлы

Основные свойства металлов

Свойства металлов делятся на физические, химические, механические и технологические.

К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, теплоемкость, расширяемость при нагревании.

К химическим — окнсляемость, растворимость и коррозионная стойкость.

К механическим — прочность, твердость, упругость, вязкость, пластичность.

К технологическим — прокаливаемость, жидкотекучесть, ковкость, свариваемость, обрабатываемость резанием.

Дадим краткие определения механическим свойствам.

Прочностью металла называется его способность сопротивляться действию внешних сил, не разрушаясь.

Твердостью называется способность тела противостоять проникновению в него другого, более твердого тела.

Упругость — свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших изменение формы (деформацию).

Вязкостью называется способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам. Вязкость — свойство обратное хрупкости.

Пластичностью называется свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность—свойство обратное упругости.

Современными методами испытания металлов являются механические испытания, химический анализ, спектральный анализ, металлографический и рентгенографический анализы, технологические пробы, дефектоскопия. Эти испытания дают возможность получить представление о природе металлов, их строении, составе и свойствах, а также определить доброкачественность готовых изделий.

Механические испытания имеют важнейшее значение в промышленности.

Детали машин, механизмов и сооружений работают под нагрузками.

Нагрузки на детали бывают различных видов: одни детали нагружены постоянно действующей в одном направлении силой, другие подвержены ударам, у третьих силы более или менее часто изменяются по своей величине и направлению. Некоторые детали машин подвергаются нагрузкам при повышенных температурах, при действии коррозии и т. п.; такие детали работают ,3 сложных условиях.

В соответствии с этим разработаны различные методы испытаний металлов, с помощью которых определяют механические свойства.

Наиболее распространенными испытаниями являются статическое растяжение, динамические испытания и испытания на твердость.

Статическими называются такие испытания, при которых испытуемый металл подвергают воздействию постоянной силы или силы, возрастающей весьма медленно.

Динамическими называют такие испытания, при которых испытуемый металл подвергают воздействию удара или силы, возрастающей весьма быстро,

Кроме того, в ряде случаев, производятся испытания на усталость, ползучесть и износ, которые дают более полное представление о свойствах металлов.

Механические свойства. Первое требование, предъявляемое ко всякому изделию,—это достаточная прочность.

Металлы обладают более высокой прочностью по сравнению с другими материалами, поэтому нагруженные детали машин, механизмов и сооружений обычно изготовляются из металлов.

Многие изделия, кроме общей прочности, должны обладать еще особыми свойствами, характерными для работы данного изделия. Например, режущие инструменты должны обладать высокой твердостью. Для изготовления режущих и других инструментов применяются инструментальные стали и сплавы.

Для изготовления рессор и пружин применяются специальные стали и сплавы, обладающие высокой упругостью.

Вязкие металлы применяются в тех случаях, когда детали при работе подвергаются ударной нагрузке.

Пластичность металлов дает возможность производить их обработку давлением (ковать, прокатывать).

Физические свойства. В авиа-, авто- и вагоностроении вес деталей часто является важнейшей характеристикой, поэтому сплавы алюминия и магния являются здесь особенно полезными. Удельная прочность (отношение предела прочности к удельному весу) для некоторых, например алюминиевых сплавов выше, чем для мягкой стали.

Плавкость используется для получения отливок путем заливки расплавленного металла в формы. Легкоплавкие металлы (например, свинец) применяются в качестве закалочной среды для стали.

Некоторые сложные сплавы имеют столь низкую температуру плавления, что расплавляются в горячей воде.

Такие сплавы применяются для отливки типографских матриц, в приборах, служащих для предохранения от пожаров, и т. п.

Металлы с высокой электропроводностью используются в электромашиностроении, для устройства линий электропередачи, а сплавы с высоким электросопротивлением— для ламп накаливания электронагревательных приборов.

Магнитные свойства металлов играют первостепенную роль в электромашиностроении (динамомашины, электродвигатели, трансформаторы), в электроприборостроении (телефонные и телеграфные аппараты) и т. д.

Теплопроводность металлов дает возможность производить их равномерный нагрев для обработки давлением, термической обработки; она обеспечивает также возможность пайки металлов, их сварки и т. п.

Некоторые сплавы металлов имеют коэффициент линейного расширения близкий к нулю; такие сплавы применяются для изготовления точных приборов, радиоламп и пр.

Расширение металлов должно приниматься во внимание при постройке длинных сооружений, например мостов.

Нужно также учитывать, что две детали, изготовленные из металлов с различным коэффициентом расширения и скрепленные между собой, при нагревании могут дать изгиб и даже разрушение.

Химические свойства. Коррозионная стойкость особенно важна для изделий, работающих в сильно окисленных средах (колосниковые решетки, детали машин химической промышленности). Для достижения высокой коррозионной стойкости производят специальные нержавеющие, кислотостойкие и жаропрочные стали, а также применяют защитные покрытия для изделий.

Технологические свойства. Технологические свойства имеют весьма важное значение при производстве тех или иных технологических операций.

Все материалы обладают рядом свойств, которые различаются как физические, механические, химические и технологические.

К физическим свойствам металлов относят удельный вес, температуру плавления, цвет,.электропроводность, теплопроводность, теплоемкость, расширяемость при нагревании, магнитные свойства и некоторые другие.

В зависимости от условий работы или эксплуатации деталей некоторые из этих свойств приобретают решающее значение и служат основанием для выбора материала при изготовлении и использовании детали.

Например, удельный вес и прочность — важные качества для материала в самолетостроении, где нужны легкие и прочные детали.

Температура плавления имеет большое значение для деталей, работающих при высоких температурах, например нити накаливания в электрических лампах, футеровка плавильных печей и т. п. Поэтому детали самолета изготовляют из сплавов алюминия и магния, а для изготовления нитей накаливания употребляется вольфрам и т. д.

Из химических свойств металлов главным образом важна коррозионная стойкость, а также окисляемость и растворимость.

Очень важную роль в определении пригодности металла как материала для деталей машин и механизмов играют его механические свойства.

Механические свойства: прочность, твердость, упругость, пластичность, вязкость и хрупкость.

Прочность — способность материала сопротивляться воздействию сил, не разрушаясь и не изменяя допустимой формы.

Примером прочного материала служит сталь. Стальные изделия с трудом разрушаются и изменяют форму. В противоположность стали ртуть не обладает прочностью. При обычной температуре она находится в жидком состоянии и не сохраняет формы.

Твердость — способность материала противостоять проникновению в него другого, более твердого тела. Самым твердым из известных нам веществ является алмаз. Высокой твердостью обладают различные сорта стали и так называемые твердые сплавы. Твердость — главнейшее свойство материалов, из которых изготовляют режущие инструменты.

Упругость — способность тела восстанавливать свою первоначальную форму после прекращения действия сил, вызвавших это изменение. Примером упругого тела может служить стальная пружина, которая после прекращения сил воздействия восстанавливает свою прежнюю форму.

Пластичность — способность материала изменять свою форму под воздействием сил не разрушаясь и не восстанавливать прежней формы после прекращения действия сил. Примером пластичного металла может служить свинец. Это качество по своей сущности противоположно упругости.

Вязкость — способность материала выдерживать механические воздействия (удары) не разрушаясь. Очень вязка, например, малоуглеродистая сталь, употребляемая для неответственных деталей.

Хрупкость — качество, противоположное вязкости, способность тела легко разрушаться при механических воздействиях (ударах). Примером хрупкого металла является чугун.

Технологические свойства металлов и сплавов представляют собой сочетание различных механических и физических свойств, проявляющихся в процессах изготовления деталей машин.

К технологическим свойствам металла относятся возможность обработки резанием, литьем, прокаткой, ковкой, волочением, способность свариваться и подвергаться термообработке.

Для определения свойств металлов и сплавов пользуются:а) механическими испытаниями, которыми устанавливают их прочность, твердость, упругость, пластичность, вязкость и хрупкость;б) физическими измерениями удельного веса, температуры плавления, тепла и электропроводности;в) химическим анализом, который определяет качественный и количественный состав сплава;г) металлографическим- анализом, позволяющим получить данные о структуре и свойствах металла с помощью микроскопа и рентгеновского аппарата;

д) технологическими пробами, дающими возможность определить пригодность металла для данного вида обработки.

Источник: http://pereosnastka.ru/articles/osnovnye-svoistva-metallov

Понравилась статья? Поделить с друзьями: