Чем определяется мощность сварочной дуги

Сварочная дуга

Чем определяется мощность сварочной дуги

Уже более столетия человечество применяет технологию создания неразъемных соединений металла — электросварку. В ее основе лежит физическое явление электрической дуги.

Исследования в области воздушных искровых разрядов начал итальянский физик Алессандро Вольта в 18 веке. В его честь электрическую дугу иногда называют «вольтова дуга».

Значительный вклад в разработку технологии сделали русские ученые Бернадос и Славянов, и француз Меритен.

Сварочная дуга

Что такое сварочная дуга ее определение

Сварочной дугой называют большой по продолжительности и выделяемой энергии электроразряд между электродами с разницей потенциалов, происходящий в газовой среде.

Ввиду высокой плотности электрического тока металл, через который он протекает, быстро нагревается — сначала до температуры пластичности и далее до температуры плавления. Максимальная температура, теоретически достижимая в электрической дуге — до 7000 °С.

 На практике она позволяет плавить металлы с температурой плавления свыше 3000 °С, включая вольфрам.

С точки зрения теории электроцепей, электрическая дуга представляет собой проводник, состоящий из ионизированного газа. При протекании по нему тока выделяется большое количество тепловой энергии.

Различают несколько типов электроразряда:

  • Тлеющий. Низкоэнергетический разряд относительно слабым током при пониженном давлении газа, используется в люминесцентных светильниках и плазменных экранах.
  • Искровой. Возбуждается при нормальном давлении, имеет прерывистую форму. К таким разрядам относиться молния и искра зажигания в автомобильном двигателе.
  • Дуговой. Постоянный разряд при обычном давлении. Используется при электросварки, для дуговых ламп.
  • Коронный. Возбуждается на неоднородной поверхности между участками с разным потенциалом.

Коронный разряд используется при очистке газов от пылевых загрязнений.

Природа и строение

При зажигании дуги создается электрическая цепь. В ней участвуют два электрода — анод и катод, а также участок ионизированного газа. Протекая сквозь газовое облако, электрический ток вызывает его нагрев и интенсивное свечение, связанное с излучением фотонов.

Соответственно участкам цепи, строение сварочной дуги включает в себя три основные области:

  • анодная — толщиной 10-4 см;
  • катодная 10-5 см;
  • столб дуги, длиной 4-6 мм.

В первых двух зонах  возникают активные пятна, в них происходит максимальное падение напряжения и максимальный нагрев.

Падение же напряжения в самом сварочном столбе невелико.

При действии электродуги, кроме повышенной температуры, действует еще один важный фактор — весьма интенсивное ультрафиолетовое излучение. Оно оказывает вредное воздействие на человеческий организм, прежде всего – на органы зрения и кожные покровы.

Строение сварочной дуги

Во избежание вреда для здоровья при работе с электросваркой обязательно применение средств индивидуальной защиты: сварочной маски, рукавиц и плотной одежды и обуви из негорючих материалов.

Существует несколько классификаций дуг по различным признакам.

По схеме электрического соединения электрические сварочные дуги разделяют на:

  • Прямого действия. Одним электродом является свариваемая конструкция, другой электрод плавящийся. Цепь образуют электрод и металл свариваемых деталей. В зазоре между ними разжигается дуга.
  • Косвенного действия. Разряд разжигается между двумя параллельными неплавкими электродами и подносится к свариваемым заготовкам.

Классификация сварочной дуги по схеме электрического соединения

По типу газовой среды, в которой возбуждается разряд, они подразделяются на:

  • Открытый. Действует в воздухе. Рабочую зону окружает облако из испарившегося металла, продуктов сгорания обмазки электродов.
  • Закрытый. Разряд идет под слоем флюсового порошка, облако состоит из испарившихся частиц  металлов и инертных газов, выделяющихся при плавлении флюсового порошка.
  • С принудительным нагнетанием инертных газов. В рабочую зону вдувается под небольшим давлением смесь инертных газов с углекислым и водородом в определенных пропорциях. Цель такого нагнетания — защитить материал сварочной ванны и нагретой до температуры пластичности зоны заготовок от контакта с кислородом и азотом воздуха.

По длительности работы:

  • постоянная (для длительной работы);
  • импульсная (мощный однократный импульс, применяется для контактной сварки).

По конструкции и назначению применяемых электродов:

  • Неплавкие (графит, вольфрам). Такие электроды не расходуются в процессе сварки, материал шва формируется из расплавившегося металла заготовок.
  • Плавкие. Изготавливаются из стальных сплавов. В ходе процесса металлический стержень электрода плавится, стекает в сварной зазор и вместе с расплавившимися кромками заготовок формирует шовный материал.

Классификация сварочной дуги по применяемым электродам

В состав плавких электродов включают специальные легирующие добавки, повышающие прочность и долговечность получившегося соединения.

Условия горения

В нормальных условиях, при обычном давлении и температуре 20 °С газы, и прежде всего — воздух не являются проводниками. Чтобы они смогли проводить электричество, нужно создать особые условия: высвободить с атомных орбит большое количество ионов. Такой процесс называют ионизацией.

Работу, затрачиваемую на высвобождение одного электрона, называют потенциалом ионизации. Для различных материалов она составляет он 3,5 до 20 электрон-вольт. Наименьший потенциал характерен для щелочных элементов: калия, кальция и их соединений. Эти вещества добавляют в обмазку электродов или сварочную проволоку с целью  поддержания стабильных параметров разряда. Добавляют их и в состав флюсового порошка для закрытого типа сварки.

Для обеспечения высокого качества сварного соединения необходимо поддерживать стабильные параметры электродуги, такие, как сила тока, напряжение, температура.

Температура определяется следующими факторами:

  • Материал катода.
  • Размеры катода.
  • Условия окружающей среды.

Распределение температуры дуги

Постоянство параметров тока — напряжение и сила — обеспечивается источником тока. Для сварочных работ разработано большое количество конструкций таких источников – от устаревших громоздких сварочных трансформаторов и выпрямителей до современных инверторов и полуавтоматов.

Возникновение

Электродуга возникает, или, как говорят сварщики, «разжигается» при кратковременном коротком замыкании электрода на заготовку. Протекающий ток разогревает металл, он начинает плавиться. Сильно разогревается и окружающий место контакта газ, этой энергии становится достаточно для его ионизации.

После размыкания электрода и детали столб газа между ними ионизируется и становится способным проводить электрический ток, который и устремляется по нему, и начинает гореть сварочная дуга.

Если не отвести электрод, ток протекает через точку контакта, дуги не возникает, электрод, как говорят сварщики, «залипает». Для разжигания дуги его придется оторвать от заготовки и повторить кратковременное касание.

Чем определяется мощность сварочной дуги

Мощность дуги определяет производительность сварочных работ и толщину соединяемых заготовок. Сама мощность зависит то следующих факторов:

  • Длина сварочной электродуги. Определяет количество тепла, выделяющегося при горении. При большей длине мощность возрастает, и наоборот.
  • Сила тока. Большая сила тока позволяет не погаснуть более длинной дуге.
  • Напряжение. В небольшом диапазоне повышение напряжения также приводит к росту мощности.

Повышение напряжения применяется редко, в специфических узкопрофессиональных случаях. В рядовых условиях оперируют силой тока.

Продолжительность разряда

В практических применениях чаще используется непрерывный режим разряда. Однако импульсный режим также распространен. Его используют при контактной сварке.

Сварка заготовок проводится не сплошным швом, а в нескольких точках. Такое соединение не обеспечивает герметичности, но обладает достаточной прочностью для выполнения тонкостенных конструкций, таких, как корпуса бытовой техники, различных приборов и установок, корпуса автомобилей.

Процесс осуществляется неплавящимся массивным электродом, который с большой силой прижимается к заготовке. Через электрод пропускается кратковременный ток очень большой силы — до нескольких тысяч ампер. В месте контакта металл обеих заготовки расплавляется, а по окончании импульса охлаждается и кристаллизуется как единое целое.

Далее электрод (или заготовка) перемещается вдоль линии шва к новой точке, прижимается к ней и подается новый импульс.

Электроды-ролики для контактной сварки

Существует разновидность такого метода, позволяющая получать и герметичные соединения. Электрод в этом случае выполняется в виде ролика, катящегося по поверхности заготовки. Импульсы подаются с небольшими промежутками, зоны оправления вдоль линии качения частично перекрываются и образуют сплошной материал шва. Такая технология применяется при автоматической сварке трубопроводов.

Температурные зоны

Независимо от того, какой электрод применяется — плавкий или неплавкий — в центре дугового столба наблюдается самая высокая температура — до 7000 °С.

Зоны пониженной температуры сварочной дуги располагаются в районах анодного и катодного пятна, но в них выделяется до двух третей всей энергии. Это центры излучения в инфракрасной части спектра.

Зона максимальной температуры является источником излучения в ультрафиолетовом спектре, наиболее вредного для здоровья человека.

При использовании для сварных работ  переменного тока понятие полярности теряет свой смысл. Анод и катод меняются местами 50 или 60 раз в секунду.

Дуговая сварка под слоем флюса

При работе переменным током применяется очень простое оборудование и меньше риск «залипания» электрода.

Однако стабильность дуги в таких сварочных источниках очень сильно зависит от стабильности электроснабжения. Их работа также вызывает броски напряжения в электросети.

Вольт амперная характеристика

График, выражающий, как  напряжение зависит от изменения тока, называют  вольтамперной характеристикой дуги.

В условиях  неизменной длины столба и постепенном росте тока график  разделяется на три основные зоны. В первой, называемой «нисходящая»,  с ростом тока напряжение немного снижается. Эта зона соответствует процессам, происходящим при ручной сварке. Во второй – при росте тока напряжение остается стабильным. Эта часть характеристики применяется при полуавтоматической сварке с применением механической подачи сварочной проволоки.

И наконец, третья область, именуемая «восходящая»  используется при автоматической сварке, в ней напряжение растет с повышением тока.

Дуговая сварка плавящимся электродом

Читайте также  Сварка ПНД труб электромуфтами

При ручной сварке начальные значения на кривой соответствуют режиму холостого хода источника. Когда сварщик разжигает дугу, напряжение снижается вплоть до достижения участка стабилизации, такое напряжение сохраняется во время всей операции.

Особенности

Будучи сопоставлена с другими видами электроразрядов, электрическая дуга демонстрирует следующие от них отличия:

  • Большая плотность тока (до тысяч А/см2) дает возможность развивать высокие температуры (до нескольких 1000 °С).
  • Неравномерность падения напряжения вдоль столба разряда. В анодной и катодной зоне оно весьма высоко, по всей длине столба — пренебрежимо мало.
  • Температура, развиваемая в зоне разряда, обратно пропорциональна ее толщине.
  • Многовариантность режимов работы при использовании различных участков вольтамперной характеристики.

На сегодняшний день сварочная дуга является самым быстрым, надежным и доступным методом создания неразъемных соединений металлических деталей и конструкций.

Электросварка стала и самым распространенным способом соединения. Она применяется в самых разных отраслях человеческой жизни, строительства, промышленности и транспорта.

Сварка TIG

Для получения качественных, прочных и долговечных швов необходимо точно подбирать рабочие режимы, определяющие основные свойства дугового разряда. Современное сварочное оборудование позволяет автоматически поддерживать эти параметры, облегчая работу оператора.

Область применения

Сварочная дуга используется в ручной электродуговой сварке, ставшей надежным помощником профессионалов и домашних мастеров. В ручной сварке используются плавкие электроды, обмазанные флюсовым составом.

В процессе сварки  материал стержня плавится, формируя  материал шва, а обмазка при сгорании выделяет облако газов, защищающих сварочную ванну от воздействия кислорода.

Ручная сварка используется как при работе с обычными нелегированными конструкционными сталями, так и в уникальных операциях по сварке нержавеющих, высоколегированных сплавов и цветных металлов.

Такая же дуга применяется и в установках — полуавтоматах. В них вместо электрода применяется сварочная проволока, подающаяся механическим устройством с постоянной скоростью. Инертные  газы нагнетаются в рабочую зону через сопло горелке. Эта технология отличается оптимальным расходом сварочных материалов и высокой стабильностью параметров шва. Ввиду дороговизны оборудования экономически эффективна при больших объемах сварочных работ.

Автоматическая сварка осуществляется в специальных герметично закрытых объемах, заполненных инертным газом. Ее используют при сварочных работах с цветными металлами, особо ответственных операциях с нержавеющими сплавами.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: http://StankiExpert.ru/spravochnik/svarka/svarochnaya-duga.html

Температура и другие важные характеристики сварочной дуги

Принцип электродуговой сварки основан на использовании температуры электрического разряда, возникающего между сварочным электродом и металлической заготовкой.

Дуговой разряд образуется вследствие электрического пробоя воздушного промежутка. При возникновении этого явления происходит ионизация молекул газа, повышение его температуры и электропроводности, переход в состояние плазмы.

Горение сварочной дуги сопровождается выделением большого количества световой и особенно тепловой энергии, вследствие чего резко повышается температура, и происходит локальное плавление металла заготовки. Это и есть сварка.

Основные свойства дугового разряда

В процессе работы, для того, чтобы возбудить дуговой разряд, производится кратковременное касание заготовки электродом, то есть, создание короткого замыкания с последующим разрывом металлического контакта и установлением требуемого воздушного зазора. Таким способом выбирается оптимальная длина сварочной дуги.

При очень коротком разряде электрод может прилипать к заготовке, плавление происходит чересчур интенсивно, что может привести к образованию наплывов. Длинная дуга отличается неустойчивостью горения и недостаточно высокой температурой в зоне сварки.

Неустойчивость и видимое искривление формы сварочной дуги часто можно наблюдать при работе промышленных сварочных агрегатов с достаточно массивными деталями. Это явление называется магнитным дутьем.

Суть его заключается в том, что сварочный ток дуги создает некоторое магнитное поле, которое взаимодействует с магнитным полем, создаваемым током, протекающим через массивную заготовку.

То есть, отклонение дуги вызывается магнитными силами. Дутьем процесс назван потому, что дуга отклоняется, как будто под воздействием ветра.

Радикальных способов борьбы с этим явлением нет. Для уменьшения влияния магнитного дутья применяют сварку укороченной дугой, а также располагают электрод под определенным углом.

Среда горения

Существует несколько различных сварочных технологий, использующих электродуговые разряды, отличающиеся свойствами и параметрами. Электрическая сварочная дуга имеет следующие разновидности:

  • открытая. Горение разряда происходит непосредственно в атмосфере;
  • закрытая. Образующаяся при горении высокая температура вызывает обильное выделение газов от сгорающего флюса. Флюс содержится в обмазке сварочных электродов;
  • в среде защитных газов. В этом варианте, в зону сварки подается газ, чаще всего, это гелий, аргон или углекислый газ.

Защита зоны сварки необходима для предотвращения активного окисления плавящегося металла под воздействием кислорода воздуха.

Слой окисла препятствует образованию сплошного сварного шва, металл в месте соединения приобретает пористость, в результате чего снижается прочность и герметичность стыка.

В какой-то мере дуга сама способна создавать микроклимат в зоне горения за счет образования области повышенного давления, препятствующего притоку атмосферного воздуха.

Применение флюса позволяет более активно выдавливать воздух из зоны сварки. Использование среды защитных газов, подаваемых под давлением, решает эту задачу практически полностью.

Структура дугового разряда

Область дугового разряда условно принято делить на три участка. Участки, непосредственно прилегающие к полюсам (аноду и катоду), называют соответственно, анодным и катодным.

Центральную часть дугового разряда, расположенную между анодной и катодной областями, называют столбом дуги. Температура в зоне сварочной дуги может достигать нескольких тысяч градусов (до 7000 °C).

Хотя тепло не полностью передается металлу, его вполне хватает для расплавления. Так, температура плавления стали для сравнения составляет 1300-1500 °C.

Для обеспечения устойчивого горения дугового разряда необходимы следующие условия: наличие тока порядка 10 Ампер (это минимальное значение, максимум может достигать 1000 Ампер), при поддержании напряжения дуги от 15 до 40 Вольт.

Падение этого напряжения происходит в дуговом разряде. Распределение напряжения по зонам дуги происходит неравномерно. Падение большей части приложенного напряжения происходит в анодной и катодной зонах.

Экспериментальным путем установлено, что при сварке плавящимся электродом, наибольшее падение напряжения наблюдается в катодной зоне. В этой же части дуги наблюдается наиболее высокий градиент температуры.

Поэтому, при выборе полярности сварочного процесса, катод соединяют с электродом, когда хотят добиться наибольшего его плавления, повысив его температуру. Наоборот, для более глубокого провара заготовки, катод присоединяют к ней. В столбе дуги падает наименьшая часть напряжения.

При производстве сварочных работ неплавящимся электродом, катодное падение напряжения меньше анодного, то есть, зона повышенной температуры смещена к аноду.

Поэтому, при этой технологии, заготовка подключается к аноду, чем обеспечивается хороший ее прогрев и защита неплавящегося электрода от излишней температуры.

Вольт-амперная характеристика

На графике представлены кривые зависимости напряжения источника питания от величины сварочного тока, называемые вольт–амперными характеристиками сварочного процесса.

Кривые красного цвета отображают изменение напряжения между электродом и заготовкой в фазах возбуждения сварочной дуги и устойчивого ее горения. Начальные точки кривых соответствуют напряжению холостого хода источника питания.

В момент возбуждения сварщиком дугового разряда, напряжение резко снижается вплоть до того периода, когда параметры дуги стабилизируются, устанавливается значение тока сварки, зависящее от диаметра применяемого электрода, мощности источника питания и установленной длины дуги.

С наступлением этого периода, напряжение и температура дуги стабилизируются, и весь процесс приобретает устойчивый характер.

Источник: https://svaring.com/welding/teorija/temperatura-svarochnoj-dugi

Что такое сварочная дуга, ее определение

Сварочной дугой считается очень большой по величине мощности и длительности электрический разряд, который существует между электродами, на которые подано напряжение, в смеси газов.

Ее свойства отличаются высокой температурой и плотностью тока, благодаря которым она способна расплавлять металлы, имеющие температуру плавления выше 3000 градусов.

Вообще можно сказать, что электрическая дуга – это проводник из газа, который преобразует электрическую энергию в тепловую. Электрическим зарядом называется прохождение электрического тока через газовую среду.

Существует несколько видов электрического разряда:

  • Тлеющий разряд. Возникает в низком давлении, применяется в люминесцентных лампах и плазменных экранах;
  • Искровой разряд. Возникает, когда давление равно атмосферному, отличается прерывистой формой. Искровому разряду соответствует молния, также применяется для зажигания двигателей внутреннего сгорания;
  • Дуговой разряд. Применяет при сварке и для освещения. Отличается непрерывистой формой, возникает при атмосферном давлении;
  • Коронный. Возникает, когда тело электрода шероховато и неоднородно, второй электрод может отсутствовать, то есть возникает струя. Применяется для очистки газов от пыли;

Разновидности

Виды сварочной дуги отличаются схемой подвода сварочного тока и средой, в которой они возникают, наиболее распространенными вариантами являются:

  • Прямое действие. При таком способе сварочный располагается параллельно свариваемой металлической конструкции и дуга возникает под углом девяносто градусов по отношению к электроду и металлу;
  • Сварочная дуга косвенного действия. Возникает, когда используется два электрода, которые располагаются под углом 40-60 градусов к поверхности свариваемой детали, дуга возникает между электродами и сваривает металл;

Также существует классификация в зависимости от атмосферы, в которой они возникают:

  • Открытый тип. Дуга данного типа горит на воздухе и вокруг нее образовывается газовая фаза, содержащая пары свариваемого материала, электродов и их покрытий;
  • Закрытый тип. Горение такой дуги происходит под слоем флюса, в газовую фазу, образовавшуюся вокруг дуги входят пары металла, электрода и флюса;
  • Дуга с подачей газов. В горящую дугу подаются сжатые газы – гелий, аргон, углекислый газ, водород и другие различные смеси газов, подаются они для того, чтобы не окислялся свариваемый металл, их подача способствует восстановительной или нейтральной среде. В газовую фазу вокруг дуги входят – подающийся газ, пары металла и электрода;

Также различают по длительности действия – стационарная (для долгого применения) и импульсная (для однократного), по материалу используемого электрода – угольные, вольфрамовые – неплавящиеся электроды и металлические – плавящиеся. Самый распространенный плавящийся электрод – стальной. На сегодняшний день наиболее часто применяется сварка с неплавящимся электродом. Таким образом, виды сварочных дуг разнообразны.

Сварочная дуга: все, что вы хотели знать

Уже более полувека сварка является одним из важнейших ремесел для человека. Благодаря сварочному аппарату строятся космические корабли, функционируют заводы, и для многих умельцев сварка превратилась в хобби. Но даже самый технологичный сварочный аппарат не принесет желаемого результата без стабильной сварочной электрической дуги и ее качественных характеристик.

Читайте также  Сварочный аппарат для полипропилена

Электрическая сварочная дуга позволяет надежно сварить даже самые сложные конструкции из металла. Чтобы получить качественные сварные швы нужно учесть все ее характеристики, знать особенности и строение дуги. Дополнительно важно учитывать температуру и напряжение дуги при ручной дуговой сварке. Из этой статьи вы узнаете, что такое сварочная дуга и сущность протекающих в ней процессов, научитесь применять полученные знания на практике.

Сварочная дуга: определение

Итак, что такое сварочная дуга и каковы ее характеристики? Электроды, находящиеся под напряжением в смеси газов и паров, формируют мощный разряд. Что называется электрическим разрядом? Разряд — это результат прохождения электрического тока через газ. Ну а результат всего процесса в целом называют сварочной дугой.

Сварочная дуга и ее свойства отличаются большой температурой и плотностью тока, поэтому дуга способна расплавить практически любой металл. Говоря более простыми словами, сварочная дуга является отличным проводником, преобразующим получаемую электрическую энергию в тепловую. За счет этой тепловой энергии и плавится металл.

Суть и строение дуги

Суть сварочной дуги крайне проста. Давайте разделим процесс на несколько пунктов:

  • Сначала электрический ток проходит через катодную и анодную область и проникает в газовую среду. Формируется электрический разряд с сильным свечением.
  • Образуется дуга. Температура сварочной дуги может доходить до 10 тысяч градусов по Цельсию, а этого достаточно, чтобы расплавить практически любой материал.
  • Затем ток с дуги переходит на свариваемый металл. Вот и все ее характеристики.

Свечение и температура разряда настолько сильны, что могут нанести ожоги и лишить сварщика зрения. Поэтому мастера используют сварочные маски, защитные перчатки и костюм. Ни в коем случае не занимайтесь сваркой без надлежащей защиты.

Строение сварочной дуги представлено на картинке ниже.

В области катода и анода во время горения дуги образуются пятна, где температура достигает своего предела. Именно через анодные и катодные области проходит электрический ток, при этом в этих областях напряжение значительно падает, а на столбе напряжения сварочной дуги сохраняется, поскольку столб располагается между анодом и катодом.

Многие новички спрашивают, как измерить длину дуги. Достаточно посмотреть на катодную и анодную область, а также на сварочный столб. Их совокупность и называется длинной сварочной дуги. Средняя длина составляет 5 миллиметров. В этом случае температура получаемой тепловой энергии оптимальна и позволяет выполнить большинство сварочных работ.

Теперь, когда мы узнали, что сварочная дуга представляет собой, обратимся к разновидностям.

Виды сварочной дуги

Сварочная дуга и ее характеристики могут отличаться по прямому и косвенному действию сварочного тока, а также по атмосфере, в которой они формируются. Давайте разберем эту тему подробнее.

Прямое действие сварочной дуги характеризуется особым направлением тока.

Электрод располагается почти параллельно свариваемой поверхности и при этом дуга формируется под углом в 90 градусов. Электрическая сварочная дуга и ее характеристики могут быть и косвенного действия. Она может формироваться лишь с использованием двух электродов, расположенным под углом над поверхностью свариваемой детали. Здесь так же возникает сварочная дуга и металл плавится.

Как мы писали выше, сварочные дуги также делятся по атмосфере, в которой формируются. Вот их краткая классификация:

  • Открытая среда. В открытой среде (атмосфере) дуга формируется за счет кислорода из воздуха. Вокруг нее образуется газ, содержащий пары свариваемого металла, выбранного электрода и его покрытия. Это самая распространенная среда при дуговой сварке.
  • Закрытая среда. В закрытой среде дуга горит под толстым слоем защитного флюса при этом так же формируется газ, но содержащий не только пары металла и электрода, а еще и пары флюса.
  • Газовая среда. Дугу поджигают и подают один из видов сжатого газа (это может быть гелий или водород). Дополнительная подача сжатого газа также защищает свариваемые детали от окисления, газы формируют нейтральную среду. Здесь, как и в остальных случаях, формируется газ, который содержит пары металла, электрода и сжатый газ, который сварщик дополнительно подает во время горения дуги.

Еще сварочные дуги могут быть стационарными и импульсными. Стационарные используют для долгой кропотливой работы без необходимости частого перемещения дуги. А импульсную используют для быстрой однократной работы.

Также сварочная дуга и ее характеристики могут косвенно классифицироваться по виду используемого в работе электрода (например, угольного или вольфрамового, плавящегося и неплавящегося). Опытные сварщики чаще всего используют неплавящийся электрод, чтобы лучше контролировать качество получаемого сварного соединения. Как видите, процесс сварки простой сварочной дугой может иметь множество особенностей, и их нужно учитывать в своей работе.

При каких условиях горит дуга

В обычном цеху или в вашем гараже средняя температура составляет 20 градусов по Цельсию, а давление не превышает одной атмосферы. В таких условиях газ практически не способен проводить электрический ток и тем самым формировать дугу. Для решения этой проблемы нужно добавить ионы в образующиеся газы. Вот что называют ионизацией профессиональные мастера.

Также в катодной области нужно постоянно поддерживать постоянную температуру. Это необходимо, чтобы дуга возникла и поддерживала горение. Но поскольку именно в области катода и анода температура может снижаться быстрее, у многих новичков возникает масса проблем.

Кроме того, температура области катода может сильно варьироваться в зависимости от температуры в помещении, где проходит сварочный процесс. Проблем можно избежать, если следить за исправностью источника питания и стабильностью подачи электричества (особенно важный момент для домашних сварщиков с нестабильным напряжением в бытовой электросети).

Все это оказывает большое влияние на свойства сварочной дуги и сущность протекающих в ней процессов.

Особенности дуги

Сварочная дуга и ее характеристики обладают рядом особенностей, которые нужно учитывать в своей работе:

  • Как мы неоднократно говорили, у дуги очень высокая температура. Она достигается за счет большой плотности электрического тока (плотность может достигать тысячи ампер на квадратный сантиметр). По этой причине важно правильно настроить аппарат и быть осторожным при сварке тонких металлов.
  • Электрическое поле неравномерно распределяется между электродами, если их используется две штуки. При этом в сварочном столбе напряжение практически не меняется, а вот в катодной области это напряжение заметно снижается, что может привести к ухудшению качества шва.
  • В сварочном столбе, в свою очередь, наблюдается самый высокий показатель температуры, чего нельзя сказать о других частях дуги. Учтите, что если вам необходимо увеличить длину дуги, то вы скорее всего потеряете часть этой температуры. Этот показатель особенно важен при сварке металлов с высокой температурой плавления.

Еще с помощью выбора плотности тока можно регулировать падение напряжения сварочной дуги. Чем выше плотность тока, тем выше вероятность, что напряжение сварочной дуги упадет.

Но бывают случаи, когда от нарастающей силы тока напряжение сварочной дуги увеличивается. Чтобы контролировать этот процесс понадобится некоторый опыт. Не бойтесь экспериментировать, если вам позволяет работа.

Это были основные свойства сварочной дуги, на которые следует обратить внимание.

Вместо заключения

Источник: https://svarkaed.ru/svarka/poleznaya-informatsiya/svarochnaya-duga-vse-chto-vy-hoteli-znat.html

Pereosnastka.ru

Электрическая сварочная дуга

Категория:

Сварка металлов

Электрическая сварочная дуга

Формы электрических разрядов в газах весьма разнообразны; дуговой разряд является высшей, наиболее развитой формой стационарного газового разряда. В нормальных условиях при низких температурах все газы являются непроводниками электрического тока — изоляторами. Газ может проводить электрический ток лишь в том случае, если в газе появляются электрически заряженные частицы — ионы.

Процесс образования заряженных частиц называется ионизацией, а газ, в котором появились заряженные частицы и который вследствие этого получил способность проводить электрический ток, называется ионизированным. На ионизацию газа могут влиять различные факторы. Протекание тока через газ сопровождается ионизацией газа. В этом случае проходящий через газ ток определяет степень ионизации газа и его электропроводность.

В таких условиях электрическое сопротивление газа может иметь любую величину — от очень малых значений до весьма больших, и при этом отсутствует определенная зависимость между напряжением, подведенным к газовому промежутку, и возникающим электрическим током.

Поэтому, например, для дугового разряда не имеет смысла вопрос, какой ток будет в разряде при данном напряжении, так как ток может иметь самые различные значения, в зависимости от параметров питающей цепи.

Источниками заряженных частиц в газах могут служить сами молекулы газа, которые при подведении достаточных количеств энергии могут образовывать электрически заряженные частицы, т. е. ионизироваться. Такая ионизация может быть названа ионизацией в объеме, или объемной ионизацией.

Источником заряженных частиц могут также служить твердые или жидкие тела, соприкасающиеся с газовым объемом, в котором происходит разряд. Особенно важна в этом отношении роль отрицательного электрода — катода, который часто служит мощным источником свободных электронов в разряде.

Дуговой разряд возникает в газе при достаточной силе тока в цепи. Возникший разряд концентрируется и стягивается определенным образом, отвечающим минимуму мощности для данной силы тока, четко отграничивается от окружающей среды и протекает при высоких плотностях тока.

На рис. 1 схематически изображен дуговой разряд с угольным катодом при атмосферном давлении, питаемый постоянным током. Между положительным электродом — анодом и отрицательным — катодом расположена наиболее важная часть дугового разряда — положительный столб, или просто столб дугового разряда, имеющий обычно коническую или сферическую форму.

Газ столба ослепительно ярко светится и имеет очень высокую температуру, порядка 6000 °С. Столб окружен пламенем или ореолом дуги, имеющим значительные размеры. Пламя образуется парами и газами, поступающими из столба дуги, химически взаимодействующими с окружающей атмосферой и постепенно охлаждающимися по мере удаления от оси столба.

Газ столба сильно ионизирован.

Основным фактором, вызывающим ионизацию, является высокая температура газа, поддерживаемая притоком энергии из питающей электрической цепи. В пламени, окружающем столб, температура и степень ионизации быстро падают по мере удаления от оси столба. Ионизация происходит главным образом по схеме: нейтральная газовая молекула + энергия ионизации = = положительный ион + свободный электрон.

Читайте также  Самодельный плазморез из сварочного трансформатора

Степень ионизации газа столба очень высока. Сильно ионизированный газ столба, часто называемый плазмой, обладает особыми свойствами; его электропроводность приближается к электропроводности металлов.

Основаниями столба служат резко ограниченные области на поверхности электродов — электродные пятна. В дуге постоянного тока различают катодное и анодное пятна. Плотность тока в пятнах может составлять десятки тысяч ампер на 1 см2.

Электродные пятна выделяются ослепительной яркостью, значительно превышающей яркость столба.

В тонком слое у поверхности пятен проходят процессы, связанные с образованием и нейтрализацией заряженных частиц, обусловленные переходом электрического тока из материалов электрода в газовый промежуток и наоборот.

Происходит преобразование большого количества электрической энергии разряда в тепловую энергию, нагревающую и расплавляющую основной металл.

Удельная мощность, освобождаемая разрядом на поверхности пятен, очень высока и может достигать десятков киловатт на 1 см2.

Рис. 1. Схема дугового разряда:1 — катодное пятно; 2 — столб дуги; 3 — анодное пятно; 4 — пламя (ореол) дуги

Электрические параметры сварочных дуг могут изменяться в широких пределах. В наиболее важной для практики дуге прямого действия применяются токи 1—3000 а при напряжении дуги 10—50 в.

Мощность дуги может изменяться от 0,01 до 150 кет, т. е. в 15 000 раз.

Такой широкий диапазон мощностей позволяет применять дуги для сварки металлов от самых малых до весьма больших толщин, от мельчайших деталей до самых больших и тяжелых изделий, конструкций и сооружений.

Катод разряда эмиттирует в объем столба большое количество свободных электронов.

Освобождение, или эмиссия, электронов на катоде может вызываться нагревом катода, причем плотность эмиссионного тока быстро растет с повышением температуры катода, и для материалов катода, имеющих высокие температуры плавления и кипения (уголь, вольфрам), электронная эмиссия нагретого катода, или термоэлектронная эмиссия, может достигать высоких значений.

Для железных и медных катодов термоэлектронная эмиссия имеет меньшее значение, а для катодов из цинка, ртути и т. п. термоэлектронной эмиссией можно пренебречь. В последнем случае решающее значение получает эмиссия холодного катода, или автоэлектронная эмиссия, создаваемая появлением электрического поля очень высокой напряженности, порядка 10е в/см и выше, в тонком слое у поверхности катода.

На электронную эмиссию затрачивается энергия, и катод охлаждается. В результате бомбардировки положительными ионами поверхности катода общий баланс энергии на катоде положителен и катод получает значительное количество энергии, нагревающей, плавящей и испаряющей материал катода. В столбе дуги процессы ионизации протекают преимущественно за счет высокой температуры газа.

В результате сложных процессов в газе столба, возникновения и нейтрализации заряженных частиц устанавливается подвижное равновесие, характеризующееся тем, что в любом не слишком малом объеме столба алгебраическая сумма электрических зарядов заряженных частиц равна нулю.

Поэтому сильно ионизированный газ, или плазма, столба дуги ведет себя по отношению к окружающему пространству как нейтральный газ.

Анод дугового разряда бомбардируется электронами, поступающими из столба дуги.

Электрон, падающий на анод, проникает в его объем и в свободном виде больше не существует; на поверхности анода электрон отдает потенциальную энергию, соответствующую работе выхода анодной поверхности, и кинетическую энергию, приобретенную в области анодного падения. В процессе электронной бомбардировки аноду сообщается значительное количество энергии и он интенсивно разогревается.

Общее количество освобождающейся энергии на аноде обычно больше, чем на катоде, но возможно и иногда наблюдается в сварочных дугах и обратное соотношение.

Наивысшая температура наблюдается в осевой части столба дуги; в нормальной сварочной дуге она достигает 6000° С. На поверхностях электродов в области электродных пятен температура обычно близка к температуре кипения материала электродов. Напряжение дуги, т. е.

напряжение между концами ее электродов, является сложной функцией длины дуги и силы тока в ней, а также существенно зависит от материала и размеров электродов, состава и давления газа и т. д. Опытная зависимость напряжения дуги от тока и ее длины представлена на рис. 2, а.

Подобные кривые называются характеристиками дуги, причем они относятся к установившемуся стационарному состоянию дуги, почему и называются статическими характеристиками.

Рис. 2. Характеристика дуги

Приведенные соотношения и характеристики относятся к сварочным дугам с постоянной плотностью тока в электродных пятнах, когда площадь пятна меньше площади торцовой поверхности электрода.

За последние годы в связи с развитием автоматической дуговой сварки появилась возможность осуществить режимы, при которых торцовая поверхность электрода уже недостаточна для размещения электродного пятна с нормальной плотностью тока.

В таком случае плотность тока на электроде меняется с изменением сварочного тока.

Рис. 3. Характеристика дуги

—-

Виды сварочных дуг. Источником теплоты при дуговой сварке является сварочная дуга — устойчивый электрический разряд в сильно ионизированной смеси газов и паров материалов, используемых при сварке, и характеризуемый высокой плотностью тока и высокой температурой.

В зависимости от числа электродов и способов включения электродов и свариваемой детали в электрическую цепь различают следующие виды сварочных дуг: – прямого действия, когда дуга горит между электродом и изделием; – косвенного действия, когда дуга горит между двумя электродами, а свариваемое изделие не включено в электрическую цепь; – трехфазная дуга, возбуждаемая между двумя электродами, а также между каждым электродом и основным металлом.

По роду тока различают дуги, питаемые переменным и постоянным током. При применении постоянного тока различают сварку на прямой и обратной полярности.

В первом случае электрод подключается к отрицательному полюсу и служит катодом, а изделие — к положительному полюсу и служит анодом; во втором случав электрод подключается к положительному полюсу и служит анодом, а изделие — к отрицательному и. служит катодом.

В зависимости от материала электрода различают дуги между неплавящимися электродами (угольными или вольфрамовыми) и плавящимися металлическими электродами.

Рис. 4. Виды сварочных дуг: а — прямого, 6 — косвенного, в — комбинированного действия (трехфазная)

Сварочная дуга обладает рядом физических и технологических свойств, от которых зависит эффективность использования дуги для сварки. К физическим свойствам относятся электрические, электромагнитные, кинетические, температурные, световые.

К основным технологическим свойствам относятся: мощность дуги, пространственная устойчивость, саморегулирование.

Электрические свойства дуги. Для образования и поддержания горения дуги необходимо иметь в пространстве между электродами электрически заряженные частицы — электроны, положительные и отрицательные ионы. Процесс образования ионов и электронов называется ионизацией, а газ, содержащий электроны и ионы, ионизированными. Ионизация дугового промежутка происходит во время зажигания дуги и непрерывно поддерживается в процессе ее горения.

Рис. 5. Схема сварочной дуги и падения напряжения в ней: 1 — электрод, 2 — изделие, 3 — анодное пятно, 4 – анодная область дуги, 5 — столб дуги, в — катодная область дуги, 7 — катодное пятно

Тепловая мощность дуги. Основной характеристикой сварочной дуги как источника энергии для сварки является эффективная тепловая мощность qa.

Эффективная тепловая мощность источника сварочного нагрева — это количество теплоты, введенное в металл за единицу, времени и затраченное на его нагрев.

Эффективная тепловая мощность является частью общей тепловой мощности дуги q, так как некоторое количество тепла дуги непроизводительно расходуется на теплоотвод в металле, излучение, нагрев капель при разбрызгивании.

Отношение эффективной тепловой мощности к полной тепловой мощности источника теплоты называется эффективным коэффициентом полезного действия (к. п. д.).

Значение может меняться от 0,3 до 0,95 и для различных видов сварки ориентировочно составляет: открытая угольная дуга — 0,5—0,65; дуга в аргоне — 0,5—0,6; сварка штучными покрытыми электродами — 0,7—0,85; сварка под флюсом — 0,85—0,93.

Количество тепла,.вводимое в металл источником нагрева и отнесенное к единице длины шва, называется погонной энергией сварки. Погонная энергия равна отношению эффективной мощности источника тепла (дуги) qa к скорости перемещения дуги.

При образовании сварного шва эффективная тепловая мощность дуги расходуется на расплавление основного и присадочного металла.

Сжатая дуга. Особым видом сварочной дуги является сжатая дуга — дуга, столб которой сжат с помощью сопла плазменной горелки или потока газов (аргона, азота и др.). Плазма — это газ, состоящий из положительно и отрицательно заряженных частиц, общий заряд которых равен нулю.

Плазма генерируется в канале сопла, обжимается и стабилизируется его водоохлаждаемыми стенками и холодным плазмообра-зующим газом.

Обжатие и охлаждение наружной поверхности столба дуги вызывает его концентрацию, что приводит к резкому увеличению числа соударений между частицами плазмы, увеличению степени ионизации и резкому повышению температуры столба дуги (до 10 000—20 000 К) и кинетической энергии плазмы, которая используется для сварки и резки. Устройство для создания направленного потока плазмы, движущегося с большой скоростью’ и обладающего большим запасом энергии, называется плазмотроном или плазменной горелкой.

Рис. 6. Схемы сварки плазменной ду.гой (а) и плазменной струей (б, в): 1 — электрод, 2 — канал, 3 — охлаждающая вода, 4 — столб дуги, 5 — сопло, в — плазменная струя, 7 — изделие, И — источник тока, I — длина рабочей части канала

Имеется несколько схем устройств для получения плазменных дуг и струй: – для получения плазменной дуги, когда сопло и канал совмещены, плазменная струя совпадает со столбом дуги, одним из электродов является обрабатываемый материал (рис. 6, а); – для получения плазменной струи, выделенной из столба дуги при раздельных сопле и канале (рис. 6, б); – то же, но с совмещенными соплом и каналом (рис. 6, б).

Плазменная струя создается дуговым разрядом, возбуждаемым между электродом и вторым электродом, в качестве которого может служить изделие, раздельное сопло или стенки канала.

Реклама:

Источники тока для питания сварочной дуги

Источник: http://pereosnastka.ru/articles/elektricheskaya-svarochnaya-duga

Понравилась статья? Поделить с друзьями: